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Abstract

Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp., 
in arid regions of the southwestern United States. Though some who develop infections from this 

fungus remain asymptomatic, others develop respiratory disease as a consequence. Less 

commonly, severe illness and death can occur when the infection spreads to other regions of the 

body. Previous analyses have attempted to connect the incidence of coccidioidomycosis to broadly 

available climatic measurements, such as precipitation or temperature. However, with the limited 

availability of long-term, in situ soil moisture data sets, it has not been feasible to perform a direct 

analysis of the relationships between soil moisture levels and coccidioidomycosis incidence on a 

larger temporal and spatial scale. Utilizing in situ soil moisture gauges throughout the southwest 

from the U.S. Climate Reference Network and a model with which to extend those estimates, this 

work connects periods of higher and lower soil moisture in Arizona and California between 2002 

and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states, 

coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. 

Stated differently, a higher number of coccidioidomycosis cases are likely to be reported if 

previous bands of months have been atypically wet or dry, depending on the location.

1. Introduction

Coccidioidomycosis is caused by the fungus Coccidioides spp., which is found in the soils 

of the southwestern United States, south central Washington State, and regions of South 

America, Central America, and Mexico. This disease can cause flu-like symptoms, which 

can persist for weeks or even months. In a minority of cases, the infection can lead to 

pulmonary complications or spread from the lungs to other organ systems, leading to 

conditions of greater severity, such as meningitis [Rosenstein et al., 2001; Galgiani et al., 
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2005] or death [Kolivras et al., 2001; Huang et al., 2012]. Though inhalation of these spores 

does not always cause illness, those who do become ill are hospitalized in over 40% of 

cases, with 75% of patients unable to perform their normal daily activities for a median of 

47 days [Tsang et al., 2010].

Previous research has noted relationships between climatic features for which data are 

widely available and the incidence of coccidioidomycosis, noting proposed hydroclimatic 

and biological mechanisms by which these infections occur. Kolivras and Comrie [2003], 

focusing their study upon Pima county in Arizona, hypothesized that a dry foresummer or 

fall kills other microorganisms that might compete with Coccidioides. Subsequently, winter 

rainfall leads to the spore formation that results in high incidence during the following year. 

A subsequent analysis by Comrie [2005] also addressed the seasonal patterns of 

precipitation and temperature as they relate to the reported cases of coccidioidomycosis. 

They, too, noted that precipitation during the preceding year’s summer or even the summer 

from 2 years previous is inversely related to reported cases of coccidioidomycosis. This 

“grow and blow” hypothesis, in which wetter conditions cause spore formation and drier 

conditions facilitate their distribution, is corroborated in Tamerius and Comrie [2011], where 

fall precipitation is correlated with exposures during the subsequent year. Other works 

attempted to locate the ecological niche for Coccidioides within the arid Southwest 

[Baptista-Rosas et al., 2007] using soil characteristics and other features, including moisture. 

Finally, Stacy et al. [2012] employed normalized difference vegetation index as a proxy for 

soil moisture, showing antecedent winter precipitation’s impact on incidence during the 

following year.

Unfortunately, in none of these cases were soil moisture data available in sufficient temporal 

and spatial scope to allow a more direct analysis—the effects of soil moisture on 

coccidioidomycosis incidence. Three figures from some of the works cited within the 

literature review are worth mentioning. Figure 5 from Kolivras et al. [2001] presents 

bimodal annual precipitation patterns in Arizona along with the annual pattern of valley 

fever incidence. This figure illustrates that the monthly precipitation pattern in Pima county, 

AZ, does not describe (at least in large part) the pattern of coccidioidomycosis incidence. 

Figures 1 and 2 from Comrie [2005] illustrate, in the same county, annual and monthly 

precipitation patterns that do not align with coccidioidomycosis incidence rates. As a result, 

soil moisture data provide an additional layer of insight to the analysis. However, in addition 

to precipitation gauges at U.S. Climate Reference Network (USCRN) [Bell et al., 2013; 

Diamond et al., 2013] locations in California and Arizona (Figure 1), an in situ record has 

become available after 2010. Moreover, USCRN sites contain colocated precipitation 

instruments. Many of these instruments predate the installation of soil moisture gauges by 

several years, facilitating the calibration of a precipitation driven soil moisture model (the 

diagnostic soil moisture equation) [Pan et al., 2003; Pan, 2012] that can be used to achieve 

two objectives. The first is to extend the soil moisture record backward temporally to the 

original installation of precipitation sensors—this was done in Coopersmith et al. [2015a]. 

Second, by generating such a model, gaps in the soil moisture record (e.g., a day when a 

sensor was damaged by ambient meteorological conditions and a period during which 

readings were not recorded) can be filled with the model’s estimate. As a result, a longer, 
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more robust soil moisture record in Arizona and California is now available, enabling the 

types of direct comparisons not previously plausible with earlier in situ sensory resources.

2. Methodology

2.1. Defining the Coccidioidomycosis Data Set

Coccidioidomycosis is currently a reportable disease in 22 states and is nationally notifiable 

to the U.S. Centers for Disease Control and Prevention through the National Notifiable 

Diseases Surveillance System (NNDSS). We used the number of monthly 

coccidioidomycosis cases reported to NNDSS, by county, in Arizona and California during 

2000–2014 to facilitate appropriate comparisons to determine robust relationships between 

soil moisture conditions and coccidioidomycosis. We normalized the numbers of reported 

cases by the populations of the counties in which those cases are reported. In California, 

2000 and 2010 county census estimates are publically available from http://

censusviewer.com/counties/CA. The 2014 population figures by county can be obtained 

from http://quickfacts.census.gov/qfd/maps/california_map.html. For years between 2000 

and 2010 or between 2010 and 2014, a linear interpolation was performed.

The linear interpretation was performed for every year and county in California for which 

reported cases of coccidioidomycosis were available, and in analogous fashion for Arizona 

(data are available from and http://censusviewer.com/counties/AZ and http://

quickfacts.census.gov/qfd/maps/arizona_map.html, respectively). From here, we converted 

every monthly county estimate as shown in equation (1):

(1)

In equation (1), VFc,m, y signifies the reported cases of coccidioidomycosis in a given county 

during a given month of a given year, Py denotes the estimated population during that year, 

and normalized_VFc,m,y represents the number of cases reported per one million residents.

Counties with small populations and few reported cases can skew results. For this reason, 

counties in which the averages of reported coccidioidomycosis cases did not exceed 10 per 

month were excluded from subsequent analysis. The resulting subset of data included three 

counties in Arizona (Pima, Pinal, and Maricopa) and six counties in California (Fresno, 

Kern, Kings, Los Angeles, San Diego, and Tulare).

A long-term annual trend, more specifically an overall increase in coccidioidomycosis 

incidence (until 2012—incidence falls thereafter), has been noted in Arizona and California 

during the time period in question [Centers for Disease Control and Prevention, 2003, 2009]. 

It is worth noting that changes in laboratory testing and reporting practices occurred during 

this time [Centers for Disease Control and Prevention, 2013]. In Table 1, we observe a 

positive annual trend in coccidioidomycosis incidence in the selected counties in both 

California (blue) and Arizona (red). Before performing subsequent analysis, these data are 

once again detrended to ensure that the changes observed in reported cases of 
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coccidioidomycosis are related to soil moisture patterns rather than the consequence of long-

term trends.

First, we present a simple, linear model for an annual trend in reported cases of 

coccidioidomycosis.

(2)

In equation (2), normalized_VFy denotes the population-normalized number of reported 

cases of coccidioidomycosis in year y, while β0 and β1 represent the coefficients describing 

intercept and slope, respectively. Two relationships were developed of this form, one for 

Arizona and another for California. Continuing, for each county, for each month, within a 

year y, the number of annual reported cases was normalized as shown:

(3)

In equation (3), the detrended value for coccidioidomycosis cases reported (already 

normalized for population, see equation (1)) is denoted by detrended_VFc,m,y, obtained by 

dividing the population-normalized value for reported cases of coccidioidomycosis, 

normalized_VFc,m,y by the expected total for the year in question, subsequently multiplied 

by the average annual, population normalized total between 2000 and 2013, 

.

2.2. Defining the Corresponding Soil Moisture Data Set

With soil moisture playing an increasingly important role in precision agricultural decision 

support [Coopersmith et al., 2014a], complex hydrologic models [e.g., Grayson et al., 1997; 

Bell et al., 2010], drought monitoring [e.g., Sheffield et al., 2004; Bell et al., 2015], and 

General Circulation Models [e.g., Koster and Milly, 1997; Belair et al., 2005; Campoy et al., 
2013; De Rosnay et al., 2013; Joetzjer et al., 2013], the availability of in situ soil moisture 

resources has increased dramatically in the past decade. As discussed in the previous 

section, an in situ network, the U.S. Climate Reference Network (USCRN), formed the basis 

of this inquiry [Diamond et al., 2013; Bell et al., 2013]. USCRN provides quality controlled 

soil moisture and precipitation measurements at multiple for locations across the United 

States. USCRN soil moisture measurements are produced in triplicate at each recorded depth 

(5 cm, 10 cm, 20 cm, 50 cm, and 100 cm). For the purpose of this study, only the 5 cm soil 

moisture measurement was used, as this depth corresponds best with the capacity of dust 

particles to become airborne. Please review the descriptions in Bell et al. [2013] for more 

specific information about the operation, quality assurance/quality control procedures, and 

logistics of the USCRN soil instrumentation.

As the soil moisture gauges contain colocated precipitation instruments, it is possible to 

calibrate models that transform a time series of antecedent precipitation into a soil moisture 
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time series. One such model, developed by Pan et al. [2003] and subsequently updated by 

Pan [2012], is the diagnostic soil moisture equation. As a simple, lumped-bucket model, this 

equation convolutes the antecedent precipitation series and, via six parameters that can be 

calibrated via a genetic algorithm [Coopersmith et al., 2014b], returns a soil moisture 

estimate as shown in equations (4) and (5).

(4)

(5)

In equation (4), θest represents the model’s soil moisture estimate via three parameters (θre, 

ϕe, and c4). Those three parameters signify the residual soil moisture (the level below which 

moisture levels will not fall, even after prolonged absences of precipitation), the porosity 

(the maximum quantity of moisture the soil can hold when saturated), and a drainage rate 

(note that a soil with c4 = 0 drains infinitely rapidly, returning instantly to θre, a soil where 

c4 is large drains extremely slowly, remaining at ϕe in perpetuity). The “beta series,” β, in 

equation (5), convolutes an exponentially decaying series of precipitation totals, Pi, over a 

series of receding time stamps, i, from 1 to n (the maximum temporal distance at which 

rainfall can be considered relevant—that is, we ignore rainfall occurring farther back in time 

than n hours). The prediction depth is signified by z, and the “eta series,” ηi, a sinusoidal 

estimate with a period of 1 year defining moisture losses due to evapotranspiration and deep 

drainage. The eta series contains the remaining three parameters, defining the sinusoid’s 

amplitude, horizontal, and vertical shift (its period is known to be 1 year). For further 

information regarding the calibration of these models and their implementation, please 

review the original literature [Pan et al., 2003; Pan, 2012] or the literature describing their 

more recent, machine learning-based updates in Coopersmith et al. [2014b].

Parameters calibrated in this manner are shown to be viable for modeling soil moisture in 

other locations, provided that those locations are hydroclimatically and texturally similar to 

the calibration site Coopersmith et al. [2014b]. Although the USCRN soil moisture gauges 

sites included in this analysis are not perfect edaphic matches for included counties, given 

the arid climate of the American southwest, perfunctory similarity will suffice. In turn, these 

models have been used to extend the soil moisture records at these sites back to the initial 

installation of precipitation instruments [Coopersmith et al., 2015a] or to validate the 

performance of remotely sensed satellite estimates [Coopersmith et al., 2015b]. For the 

purposes of this analysis, these modeled estimates will allow us to consider the performance 

of two related soil moisture time series in estimating future reported cases of 

coccidioidomycosis. The first series denotes the modeled estimates, using the parameters 

calibrated at the location relevant location. The second series is a “merged” series, utilizing 

the in situ estimate when one is available and the modeled estimate when one is not.
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For selected counties in Arizona and California (Figure 1) with reported coccidioidomycosis 

cases, a soil moisture record is selected using the most geographically proximate in situ 

record from USCRN (Figure 1). In Arizona, the nearest in situ record is located at the 

USCRN gauge near Tucson (USCRN #1011, nearest to Maricopa, Pima, and Pinal counties). 

In California, the nearest in situ records are located near Yosemite Village (USCRN #1508, 

nearest to Fresno, Kings, and Tulare counties), Fallbrook (USCRN #1528, nearest to Los 

Angeles and San Diego counties), and Santa Barbara (USCRN #1529, nearest to Kern 

county). The next section discusses the possible relationships to be explored with those soil 

moisture data.

Given the spatial disparity between these counties and the chosen USCRN sensors for which 

model estimates extend historical records, it is prudent at this stage to assess the capacity of 

these distant sensors to approximate the local soil moisture of interest. First, the Advanced 

Microwave Scanning Radiometer–EOS (AMSR-E) satellite estimates of soil moisture 

(available between June 2002 and October 2011) are extracted for the center of each of the 

counties considered. As the in situ records at these USCRN locations typically begin in 2010 

or 2011, the remotely sensed soil moisture values from AMSR are compared with the model 

estimates produced to extend the historical records at the USCRN locations utilized for the 

purposes of this analysis. In Coopersmith et al. [2015b], these model estimates were 

compared to AMSR-E data at the USCRN locations themselves. The average accuracy 

reported in that analysis, after inclusion of an optimal gain and offset, was 0.047 m3/m3. The 

corresponding statistics, using AMSR-E within the county rather than at the USCRN 

location itself, are reported in Table 2.

Of the nine counties listed, the RMSE values between the local AMSR-E estimates and the 

model estimates at the nearest USCRN sensor are roughly in line with the reported RMSE 

values between USCRN model estimates and the local AMSR-E retrievals. Thus, these six 

counties are retained for further analysis. Kern, Los Angeles, and San Diego, are 

subsequently removed via this criterion.

2.3. Defining Relationships to Consider

With soil moisture records in place, the next step is to consider the various types of 

relationships for potential correlations. Analogous to the 8 day averages of soil moisture 

utilized in Wang et al. [2007], this analysis focuses upon the monthly average soil moisture 

value. As the period of record for coccidioidomycosis incidence falls between 2000 and 

2014, ideally, the soil moisture record with which to compare these figures should cover the 

maximum proportion of these years. For this reason, the extended records at the USCRN 

gauges (which begin when precipitation data are first available) are preferable to the in situ 

records for soil moisture. In turn, just as Wang et al. [2007] utilized period averages with 

variable daily lags, the following monthly aggregations and lags are considered: (a) the 

number of months to aggregate of the independent variable (1 to 6). That is, the average soil 

moisture from January to March (an aggregation of 3 months), only February (an 

aggregation of 1 month), or the entire first half of the calendar year (an aggregation of 6 

months); (b) the number of months to aggregate of the dependent variable (1 to 6, a 

normalized estimate of reported coccidioidomycosis cases per 1,000,000 residents, with the 
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annual trend removed), that is, we can estimate the total in August and September (an 

aggregation of 2 months) or a longer/shorter window; (c) the number of months of “lag” 

time between the independent range and the dependent range (0 to 36 months), for example, 

using the total number of hours above 10% between April and June of year X to forecast 

coccidioidomycosis in August and September and year X + 1 would represent a lag of 13 

months; and (d) the 12 possible months (or aggregations thereof), to wit, utilizing a 3 month 

window for independent or dependent variables, one can consider January–March versus 

February–April versus March–May, etc.

The next section will outline how this analysis will refine that profusion of potential 

relationships into a coherent set of insights relating soil moisture estimates to reported cases 

of coccidioidomycosis.

2.4. Focusing the Lens

Our methods are quite similar to those of Wang et al. [2007], beginning with the removal of 

a long-term trend, the application of correlation analysis to lagged data, and even the usage 

of composites of temporal ranges by aggregating between time stamps for independent 

variable generation. In Table 3, we visualize the average modeled soil moisture by month 

and the annually detrended number of reported coccidioidomycosis cases.

In California (upper panel), we observe that soil moisture arrives in clusters of roughly 6 

months, which aligns with hydroclimatic research addressing Pacific climates, where 

precipitation arrives primarily during the fall/winter seasons [e.g., Coopersmith et al., 2012]. 

In Arizona (lower panel), we observe soil moisture clusters of shorter periods of 3 months, 

aligning with the monsoon rainfall pattern of the arid Southwest. Thus, for California and 

Arizona, we will aggregate soil moisture monthly averages into clusters of six and three, 

respectively. In terms of the dependent variables, in California (upper panel), we notice 

clusters of roughly 3 months of coccidioidomycosis incidence that rise and fall in relation to 

the soil moisture levels observed, with lags of several months. In Arizona, cocci responses 

seem inversely related (drier periods are succeeded by higher coccidioidomycosis 

incidence), with somewhat longer lag periods.

To distill a large number of comparisons, we focus on those that show the more significant, 

consistent, robust relationships. If fewer than 18 comparisons are available, the comparison 

cannot be considered for use in the study. A threshold of 18 has now been adopted to ensure 

at least one pair of independent and dependent ranges per county per year, from 2007 (the 

year at which precipitation data become available in California) and 2014 (when the 

incidence data set concludes). For example, if we are considering comparisons of 

coccidioidomycosis incidence from February to March with the average in situ soil moisture 

estimate from June to August of the preceding summer, over all counties in California, a 

single data point is valid if, and only if, coccidioidomycosis estimates are available in that 

county in February and March, and in situ soil moisture estimates are available within that 

same county in June, July, and August of the previous year. As stated, 18 such points are 

required before comparisons can be further considered.
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Finally, the statistically significant relationships that remain are examined in greater detail. 

Relationships that “recur” or show higher rates of significance/correlation between the 

independent variable (a soil moisture measurement metric) and the dependent variable 

(reported cases of coccidioidomycosis) become the relationships concluded to be most 

robust. Note a relationship “recurs” if the same independent variable demonstrates strong, 

statistically significant relationships between numerous temporal windows of the subsequent 

year.

3. Results

In this section, the results of the correlation analysis are deployed to evaluate the 

performance of those comparisons for the two states in question.

3.1. California

In Tables 4 and 5, we observe the positive correlation between average modeled soil 

moisture levels over a specific 6 month period (December-to-May) and the number of 

reported cases of coccidioidomycosis in the subsequent 3 month bands covering the summer 

and fall. Table 5 demonstrates the relationship between summer/fall incidence of 

coccidioidomycossis and the average soil moisture the preceding winter and spring. The 

results of these relationships are summarized in Table 1, all of which are statistically 

significant at the α = 0.05 level.

It is worth noting that all of these relationships illustrate summer/fall periods of 

coccidioidomycosis incidence responding to the same 6 month band beginning during the 

fall of the preceding year. Interestingly, while the “wetter” 6 month bands do not necessarily 

cause a higher number of reported cases, the “drier” bands are fairly consistent with respect 

to their lower number of cases reported. It is also important to note that, in Southern 

California, a disproportionate quantity of rainfall is observed during the fall/winter/early-

spring months, which would, in turn, suggest the greatest variability of soil moisture 

between December and May, which, in turn, displays consistent relationships with respect to 

coccidioidomycosis incidence during the summer and fall thereafter.

3.2. Arizona

In Tables 6 and 7, we observe analogous examples in Arizona, albeit with an inverted 

statistical relationship. Once again, we note that one particular band of average soil moisture 

values during the summer season when much of the Arizona rain falls presents statistically 

significant relationships with respect to coccidioidomycosis incidence in each month 

between January and May. All of these relationships are statistically significant at the α = 

0.01 level. Though the correlation is inverted, this would seem to corroborate the grow and 

blow hypothesis proposed by Tamerius and Comrie [2011], in which drier periods allow 

spores to travel freely.

Additionally, much like the Californian results, in which wetter periods may or may not 

yield subsequent periods of higher incidence, but drier periods were consistently succeeded 

by lower number of reported cases of coccidioidomycosis, a similar pattern emerges in 

Arizona. To wit, in Table 6, an extremely dry summer may or may not cause the highest 
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levels of coccidioidomycosis incidence in the subsequent winter and spring, but an 

atypically wet summer produces consistently low incidence rates. In California and Arizona, 

wet and dry conditions, respectively, are necessary, but not sufficient conditions for 

heightened incidence rates.

4. Discussion

4.1. The 21st Century Precipitation

Utilizing publically available California monthly precipitation data NOAA’s monthly data 

from appropriately located gauges in Arizona (http://w2.weather.gov/climate/xmacis.php?

wfo=psr) and California (http://w2.weather.gov/climate/xmacis.php?wfo=lox), one can 

observe qualitatively, some of the climatic patterns in play during the time periods in 

question. With the USCRN precipitation record in California beginning in 2007 at most 

installation sites, Table 8 presents the precipitation observed during each year from Southern 

California (near Los Angeles) and Arizona (near Phoenix). In Table 3, we noted a gradual 

increase in the incidence of coccidioidomycosis, observing a spike in cases reported in 2011 

(followed by a sharp decrease in 2012 and 2013). In California, as our previous analysis 

would suggest, an atypically wet year in 2011 may have (at least temporarily) slowed a long-

standing positive trend. Table 8 presents the rainfall during each year. However, the increase 

in 2011 (Table 9) may be exacerbated by an exceptionally wet 2010 followed by a drier 

summer in central Arizona (though not in the south), perhaps facilitating wider spreading of 

spores by wind, as hypothesized in Kolivras and Comrie [2003]. The steep dropoff thereafter 

may be, perhaps, partially explained by the extremely wet 2012. Changes in surveillance 

methodologies, including changes in testing and reporting practices, may also have partially 

contributed to the 2011 peak [Centers for Disease Control and Prevention, 2013]. For 

example, California transitioned to a laboratory-based reporting system during 2010, though 

some jurisdictions such as Kern county had already been implementing such a reporting 

system [Centers for Disease Control and Prevention, 2013].

The Pacific Decadal Oscillation (PDO) is known to influence the variability of precipitation 

in the Southwest, specifically during Arizona winters [Sheppard et al., 2002]. An image of 

the PDO from 1870 through the time period under inspection in this study can be located at 

https://www.ncdc.noaa.gov/teleconnections/pdo/. The time period during which the spike in 

reported cases of coccidioidomycosis is observed in Arizona and California corresponds 

with the nadir of the Pacific Decadal Oscillation (PDO). Shortly thereafter, as the sign of the 

PDO switches, a sharp decrease in coccidioidomycosis incidence is observed (Table 1). The 

PDO’s connection to historical outbreaks of coccidioidomycosis could be researched by, in 

addition to removing a long-term annual trend as shown in equations (2) and (3), fitting a 

relationship between the PDO and coccidioidomycosis incidence. “Sequential 

normalization” specifies that multiple superimposed trends can be removed in order of the 

longest repeating period; see Coopersmith et al. [2011], leveraging a method from Maidment 
and Parzen [1984]. This would allow coccidioidomycosis incidence to explore in terms of 

moisture and anthropogenic features, in the absence of climatic trends.
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4.2. Limitations

Limitations of coccidioidomycosis surveillance data include the passive nature of the 

surveillance system, which almost certainly underestimates the true number of cases. In 

addition to the incubation period, some patients report experiencing substantial delays 

between seeking care as well as coccidioidomycosis diagnosis [Tsang et al., 2010], and 

further delays may occur between diagnosis and case reporting to public health. Therefore, 

the month to which cases are assigned may not necessarily reflect the month that he or she 

was infected with Coccidioides. Earlier analyses utilized time lags in their attempts to 

account for the time between exposure and symptom onset [e.g., Park et al., 2005], though a 

subsequent analysis of model sensitivity quality control determined that employing case data 

“as is” did not cause significant deterioration of results [Comrie and Glueck, 2005]. Future 

analyses may allow for more comprehensive linkage between environmental conditions for 

Coccidioides growth and observed incidence by incorporating factors that account for 

dispersal and human exposure, ideally with methods to detect Coccidioides in air. Currently, 

laboratory detection of airborne Coccidioides DNA has only been successful with artificially 

created dust clouds [Chow et al., 2016]. However, future research is needed to enable this 

technology to be used for routine monitoring of Coccidioides in ambient air and to quantify 

spore count.

5. Conclusions

Ultimately, despite the differing hydroclimates presented by the data in Arizona and 

California, in both states, robust, significant, recurring relationships do emerge. In both 

states, drought tends to correlate with higher incidence of reported coccidioidomycosis in 

the following year, whether that be a drier foresummer monsoon season in Arizona or a drier 

winter/spring in California. In Arizona, these impacts tend to be noticed earlier in the 

subsequent year, whereas in California, these impacts are noted later in the year. While other 

research challenges the impact of climatic factors in Kern county, CA [Talamantes et al., 
2007], this analysis reveals relationships in California and Arizona using climatic data to 

produce a time series of soil moisture.

With the descriptive capacity of soil moisture verified by statistical significance tests and 

demonstrated over periods between several months and over 2 years, it is possible that future 

predictive models could enable public health officials to prospectively identify periods of 

expected increased coccidioidomycosis incidence and notify healthcare providers and the 

public to remain vigilant for identification of this infection, potentially minimizing delays in 

diagnosis. We are hopeful that this analysis, in cooperation with subsequent research and 

stakeholders, will form the basis to do just that.
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Key Points

• Incidence of cocci is inversely related to soil moisture levels in previous years

• A combination of modeled and observed soil moisture is now available 

through the U.S. Climate Reference Network

• The diagnostic soil moisture equation is used to extend historical records in 

Arizona and California
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Figure 1. 
(U.S. Climate Reference Network) USCRN soil moisture gauges within county maps of 

(left) Arizona and (right) California. Counties with sufficient reported coccidioidomycosis 

cases in Arizona and California are shaded red and blue.
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Table 1

Incidence of Coccidioidomycosis per 1,000,000 Residents, Selected Counties in Arizona and California 

(2000–2014)

Year # of Reported Cases per 1,000,000 Residents (Arizona) # of Reported Cases per 1,000,000 Residents (California)

2000 460.5306325 89.48572189

2001 503.6564143 189.9703495

2002 635.5023968 239.6480424

2003 487.4520426 309.3800018

2004 723.4897709 367.8734306

2005 679.2749888 556.5844856

2006 997.392081 1045.732803

2007 914.9692501 619.8972283

2008 844.526981 700.8052481

2009 1656.425735 829.5482692

2010 1825.660079 1267.326671

2011 2420.537466 1045.615295

2012 1999.852074 775.0142713

2013 1012.168952 328.2901243

2014 982.4871174 248.2403409
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Table 2

Comparison of USCRN In Situ and AMSR-E Satellite Estimatesa

County USCRN RMSE, AMSR-E, Ascending RMSE, AMSR-E, Descending

Fresno 1508 0.050 0.051

Kern 1529 0.073 0.074

Kings 1508 0.051 0.052

Los Angeles 1528 0.073 0.072

Maricopa 1011 0.036 0.036

Pima 1011 0.035 0.035

Pinal 1011 0.035 0.035

San Diego 1528 0.073 0.077

Tulare 1508 0.046 0.051

a
Bolded values are from USCRN sensors used in the subsequent analysis.
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Table 4

Annually Detrended Cases of Coccidioidomycosis (July–September) Versus 6 Month Average Soil Moisture 

(December–May), California

Modeled SM Reported Cases

0.115 115.5262

0.128 298.9765

0.122 227.4943

0.089 56.39648

0.089 12.70564

0.091 25.9088

0.089 41.74433

0.115 46.81051

0.128 36.58167

0.122 27.86085

0.089 21.22929

0.089 13.19565

0.091 13.49517

0.089 32.53876

0.115 36.65603

0.128 83.92622

0.122 56.03302

0.089 18.30164

0.089 15.2794

0.091 11.61712
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Table 6

Annually Detrended Cases of Coccidioidomycosis (February) Versus 6 Month Average Soil Moisture (May–

July), Arizona

Modeled SM Reported Cases

0.030 90.0965

0.051 35.88342

0.037 144.1528

0.039 74.286

0.033 66.92434

0.051 55.48029

0.034 144.2103

0.022 194.4925

0.030 157.8867

0.035 64.43757

0.032 65.09426

0.030 70.94503

0.051 41.20407

0.037 125.5012

0.039 64.94447

0.033 58.86291

0.051 41.38267

0.034 80.80375

0.022 79.60832

0.030 98.13995

0.035 55.82523

0.032 54.94693

0.030 63.03275

0.051 34.91351

0.037 136.3659

0.039 78.87655

0.033 57.37626

0.051 45.40144

0.034 88.53221

0.022 127.8806

0.030 119.867

0.035 69.65828

0.032 50.91981

0.030 90.0965

0.051 35.88342

0.037 144.1528

0.039 74.286

0.033 66.92434
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Modeled SM Reported Cases

0.051 45.40144

0.034 88.53221

0.022 127.8806
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Table 8

Precipitation During the California and Arizona Calendar Years

Year Annual Precipitation (mm), AZ Annual Precipitation (mm), CA

2003 173.228 242.57

2004 202.692 414.528

2005 178.816 477.774

2006 138.43 233.172

2007 128.27 124.206

2008 243.332 279.908

2009 82.804 189.738

2010 232.156 509.27

2011 118.364 250.698

2012 108.712 225.806

2013 213.868 92.71

2014 212.598 242.57
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Table 9

Monthly Incidence of Coccidioidomycosis per 1,000,000 Residents, Selected Counties in Arizona and 

California (2000–2014)

Month # of Reported Cases per 1,000,000 Residents (Arizona) # of Reported Cases per 1,000,000 Residents (California)

1 92.95431443 45.85162106

2 81.63523957 38.46853154

3 78.20629274 37.23905642

4 79.10389713 33.56534757

5 81.45724761 32.31102624

6 87.14588194 41.04605894

7 93.04145815 36.92932236

8 89.63543347 53.02804748

9 75.26866006 58.9060512

10 88.80439084 64.11905656

11 110.4812564 59.41757467

12 110.9498537 56.3356386

Geohealth. Author manuscript; available in PMC 2018 April 17.


	Abstract
	1. Introduction
	2. Methodology
	2.1. Defining the Coccidioidomycosis Data Set
	2.2. Defining the Corresponding Soil Moisture Data Set
	2.3. Defining Relationships to Consider
	2.4. Focusing the Lens

	3. Results
	3.1. California
	3.2. Arizona

	4. Discussion
	4.1. The 21st Century Precipitation
	4.2. Limitations

	5. Conclusions
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

